Гвэ по русскому 25 мая ответы

Аттестат (не)зрелости

В заключение еще раз подчеркну, что задания аттестационных работ, как бы ни называлась аттестационная процедура – ЕГЭ или выпускной экзамен, оказывают влияние на сам процесс обучения. В частности, многие учащиеся, не получающие удовольствия от учебы и/или испытывающие трудности с освоением учебной программы средней школы, после знакомства с заданиями ГВЭ-аттестат по математике вполне могут сделать вывод, что уж на тройку-то задачки про йогурт и дешевые модели смартфона они точно решат, не прилагая дополнительных усилий.

Помню, с какой болью говорил заслуженный учитель РФ, директор московской школы №109 Евгений Ямбург на Московском международном форуме «Город образования» о детях, не обладающих выраженными способностями, плохо успевающих, имеющих проблемы с грамотностью, коммуникацией и социализацией. Талантливые и одаренные, отмечал Евгений Александрович, вероятнее всего, найдут свой путь в жизни или вообще уедут, а вот те, кто в школе имел очевидные проблемы с освоением образовательной программы, дети с различными видами девиации останутся, вырастут и в итоге будут определять жизнь в регионе.

В течение последних 20-30 лет происходило постепенное «снижение планки», упрощение требований к выпускнику школы, претендующему лишь на тройку. Если слегка утрировать, то можно сказать, что Рособрнадзор и Минпросвещения приближают тот день, когда аттестат о среднем общем образовании получит каждый выпускник школы, знающий таблицу умножения и правописание буквосочетаний жи-ши.

В истории Российской империи, а затем и СССР были периоды, когда документ об окончании школы именовался аттестатом зрелости. Сейчас, оценивая задания ГВЭ-аттестат по математике и условия получения тройки, я прихожу к выводу, что документ об окончании средней школы, к моему глубокому сожалению, вполне можно переименовать в аттестат незрелости.

Что проверяет и оценивает ГВЭ-аттестат?

Недавно на своей странице в «Фейсбуке» я опубликовал содержание задачи 5, в которой выпускник школы должен найти наименьшее из девяти четырехзначных чисел, и задал вопрос: «Почему аттестат об окончании средней школы нужно вручать за выполнение заданий, с которыми справится выпускник начальной школы?»

Можно ли найти достойное применение задачам из ГВЭ-аттестат: найти катет, если известна гипотенуза и другой катет (задание 7); найти 13% от 20 тысяч рублей (задание 2); установить, что 4 часа – это треть от 12 часов, и 360 градусов разделить на 3 (задание 8); рассчитать, сколько баночек йогурта можно купить на 100 рублей, если известна цена одной баночки (задание 1)? На мой взгляд, можно: развитие навыков устного счета для школьников 5-9-х классов. Примерно 50 лет назад в школе, расположенной на рабочей окраине Калуги, моя учительница математики Мария Васильевна использовала подобные задачки для проведения устных математических турниров в 7-м классе.

Вспоминаю об этом не для того, чтобы посокрушаться: раньше, дескать, все школьники математику любили и понимали, а сейчас выпускникам средней школы предлагаются вот такие задачи. Посокрушаться и повспоминать мы все любим, но гораздо важнее понять, что проверяет/оценивает нынешний ГВЭ-аттестат и что должен проверять/оценивать.

В законе №273-ФЗ «Об образовании в Российской Федерации» сказано, что ГИА проводится «в целях определения соответствия результатов освоения обучающимися основных образовательных программ соответствующим требованиям федерального государственного образовательного стандарта». Получается, выпускник, решая 7 простеньких задачек, демонстрирует, что результат освоения им образовательной программы средней школы соответствует требованиям ФГОС, хотя для решения этих задач можно вообще не учиться в 10-11-х классах. Довольно странно, не находите?

Математика для аттестата

Как следует из шкалы, для получения аттестата выпускник должен решить не менее 7 заданий из 14. Предлагаю всем читателям, в том числе и тем, кому школьная программа по математике категорически не давалась и казалась чересчур сложной, оценить некоторые задания из демонстрационного варианта ГВЭ-аттестат.

Для получения аттестата требуется набрать 7 первичных баллов. Здесь приведены условия 8 задач, одна – запасная, на всякий случай. Можно привести еще пару заданий примерно такой же сложности. Напоминаю, эти задачи не нужно решать устно или на скорость, как в блице, – 20 секунд, скажем, на одну задачу. Не нужно записывать решения – только ответ. Если на каждую задачу выделить 10 минут, то после решения восьми задач останется еще 40 минут на проверку.

Еще раз сообщу, что формулу для вычисления корней квадратного уравнения и теорему Пифагора запоминать не требуется, поскольку все это и еще многое другое есть в справочных материалах.

Часть II

Задания этой части требуют полного обоснованного решения и верного ответа.

Задание 11

а) Решите уравнение \((81^{\cos x})^{\sin x} = 9^{-\sqrt3 \cos x}.\)
б) Найдите все корни этого уравнения, принадлежащие отрезку \(\left \).

Решение.

а) Применим свойства показательной функции, чтобы выравнять основания. Т.к. \(81 = 9^2\), и при возведении степени в степень показатели перемножаются, получим \
Теперь можно «отбросить» основания, чтобы уравнять показатели \ Получилось стандартное тригонометрическое уравнение среднего уровня сложности. Преобразуем его к произведению сомножителей. \ Произведение может равняться нулю тогда и только тогда, когда какой-либо из его сомножителей равен нулю, т.е. либо \(\cos{x} = 0\), либо \( 2\sin{x} +\sqrt3 = 0.\)
В первом случае имеем \
Во втором случае имеем \

Все полученные значения нужно включить в ответ.

б) В предыдущей части задачи чертежи на круге носили вспомогательный характер, ответ можно было написать по формулам из учебника. Для ответа на второй вопрос чертёж нужен. Можно использовать

числовую ось

или тригонометрический круг

на которых нужно выделить заданный промежуток и соотнести с этим рисунком полученные в первом пункте ответы. Указанный промежуток относится к первому обороту ПО часовой стрелке или к первому отрицательному периоду.

Ответ:
a) \( \dfrac{\pi}{2} + \pi k, k\in Z,\; -\dfrac{\pi}{3} + 2\pi n, n\in Z,\; -\dfrac{2\pi}{3} + 2\pi m, m\in Z; \)
б) \( \dfrac{3\pi}{2}, -\dfrac{2\pi}{3}, -\dfrac{\pi}{2}. \)

Показать ответ    

Комментарий к заданию.
Это обычное уравнение среднего уровня сложности. Таких уравнений вы должны были немало решать на уроках независимо от того, в какой форме планировали сдавать ЕГЭ. По формулировке задания, требованиям к оформлению решения и критериям оценивания оно напоминает задание 13 профильного ЕГЭ по математике. Однако по сложности, прежде всего по сложности предварительных преобразований, оно гораздо легче. Я рекомендую готовиться к этой части экзамена не по материалам ЕГЭ, а по учебнику алгебры и тетрадям.

Задание 12

В тетраэдре ABCD ребро AD имеет длину 6, а все остальные рёбра равны 4.
а) Докажите, что прямые AD и BC перпендикулярны.
б) Найдите площадь сечения тетраэдра плоскостью, содержащей прямую BC и перпендикулярной прямой AD.

Решение.

Рассмотрим треугольники ADC и ADB. Они равнобедренные и равные, т.к. по условию задачи AC = CD = AB = BD = 4 и AD их общая сторона.

а) Пусть M середина стороны AD, тогда отрезки MC и МВ – медианы равнобедренных треугольников являются их высотами. Поэтому \( AD\perp MC\) и \(AD \perp MB.\) В соответствии с признаком перпендикулярности прямой и плоскости имеем AD перпендикулярна всей плоскости BCM.

Теорема. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения, то она перпендикулярна плоскости.

Поэтому AD перпендикулярна и прямой BC, лежащей в плоскости BCM.

Определение. Прямая называется перпендикулярной к плоскости, если она перппендикулярна к любой прямой, лежащей в этой плоскости.

Доказательство закончено.

б) Найти площадь сечения тетраэдра плоскостью, содержащей прямую BC и перпендикулярной прямой AD, означает найти площадь треугольника MBC. Мы, фактически, уже доказали, что это то самое сечение.
Сторону МС найдём по теореме Пифагора из треугольника AMC, в котором гипотенуза AC = 4, катет АМ = 6:2 = 3 (M – середина AD.) \
\(MB = МС = \sqrt{7}\), т.к. это медианы равных треугольников. BC = 4.
Нам известны все стороны треугольника, значит можно найти площадь по формуле Герона \(S=\sqrt{p(p−a)(p−b)(p−c)},\) где р — полупериметр, a,b,c — длины сторон треугольника.
Находим \
Те, кто не помнит формулу Герона или затрудняется в алгебраических преобразованиях с радикалами, могут провести в треугольнике МВС высоту к стороне ВС и найти её величину по теореме Пифагора.

Ответ: б)\(2\sqrt{3}.\)

Показать ответ    

Вывод: По моему мнению, оценки «три» или «четыре» на ГВЭ будет получить легче, чем на базовом ЕГЭ, потому что за то же время нужно решить меньшее число заданий. Однако оценку «пять» будет получить сложнее, так как присутствуют задания с развёрнутым ответом, к которым вы ранее не готовились. В любом случае желаю удачи!

Перейти к задачам профильного ЕГЭ.Вернуться на главную страницу сайта.

ГВЭ-2021 для выпускников, не поступающих в вузы и не имеющих ОВЗ

Выпускники, не планирующие поступать в вузы и не имеющие ограничения по здоровью, подтверждённые справкой ПМПК, тоже будут сдавать в 2021 году два обязательных ГВЭ по русскому языку и математике, но совсем по другим заданиям и без возможности потом поступать в вузы.

Если выпускник не имеет справки от ПМПК и сдаёт ГВЭ для получения аттестата, то он проходит экзамены по русскому языку и математике в формате «облегчённого ЕГЭ». Что это значит?

ГВЭ по русскому языку 2021 года для не поступающих в вузы

ГВЭ по русскому языку, согласно новому пресс-релизу Рособрнадзора, для такой категории выпускников пройдёт в своей школе, а не в ППЭ. Проверку этих контрольных работ будут осуществлять учителя-предметники школы.

Содержание нового экзамена — это привычные нам задания ЕГЭ по русскому языку, только выполнить надо будет не все задания, а только с 1 по 24. Все эти задания можно посмотреть в демоверсии ЕГЭ по русскому языку 2021 года, размещённой на сайте ФИПИ:

ГВЭ по математике 2021 года для не поступающих в вузы

Согласно новому пресс-релизу Рособрнадзора содержание ГВЭ-2021 по математике для не поступающих в вузы будет состоять из некоторых заданий базового ЕГЭ по математике. Какие именно задания будут исключены из демоверсии ГВЭ, пока не сообщили. Пока вы можете ознакомиться с официальной демоверсией ЕГЭ по базовой математике 2021 года:

ФИПИ должно опубликовать демоверсии ГВЭ-2021 для не поступающих в вузы до 10 февраля 2021 года. Когда это произойдёт, мы будет иметь исчерпывающее представление о количестве заданий и уровне их сложности. Также мы надеемся, что ФИПИ и Рособрнадзор подробно разъяснят, сколько баллов необходимо будет набрать выпускникам, чтобы преодолеть минимальный порог для получения аттестата. А пока продолжаем готовиться к экзаменам. Кстати, ГВЭ пройдёт в этом учебном году с 24 по 28 мая.

Что такое ГВЭ

ГВЭ — это разновидность , которую сдают школьники 9 и 11 классов в Российской Федерации.

В статье 59 федерального закона «Об образовании в Российской Федерации» написано, что итоговая аттестация — это форма оценки степени и уровня освоения обучающимися образовательной программы. Понятие ГВЭ прописано в отдельном приказе Министерства просвещения РФ и Рособрнадзора.

ГВЭ–9 — это вариация ОГЭ в 9 классе, а ГВЭ–11 — вариация ЕГЭ в 11. Как ясно из приказа, главное отличие государственного выпускного экзамена от обычной аттестации в том, что он предназначен для учеников, которые подходят под определённые критерии:

  • дети-инвалиды, ученики с ограниченными возможностями здоровья (ОВЗ); 
  • школьники, отбывающие наказание в исправительных колониях;
  • воспитанники специализированных школ или интернатов закрытого типа.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector