Всероссийская олимпиада школьников по математике

Содержание:

Долгая дорога к успеху в математике

К призёрству на Всеросе я плавно шёл с пятого класса. Раз в неделю мы приходили на кружок и по 2-3 часа решали задачи. Достаточно найти одного хорошего преподавателя, который даст базовые знания, а дальше — практиковаться как можно больше.

Постепенно ребята из нашего маткружка стали участвовать во всевозможных олимпиадах, причём по разным предметам. Опыт олимпиад стал ключевым в моей подготовке: я меньше волновался, больше узнавал разных подходов и методов решения задач. В результате на очередную олимпиаду приходил как к себе домой. Это не значит, что я был совершенно спокоен. На заключительном этапе в 11-ом классе было трудно справиться с волнением — всё-таки это большая ответственность.

Я, например, думал, что стану историком, когда в 6 классе занял одно из первых мест в Москве по этому предмету. Но в следующем году уровень конкуренции среди «историков» серьёзно возрос, я не успел под него подстроиться, а вот в математике успел — так определился мой путь.

На протяжении всей средней и старшей школы я посещал математический кружок раз в неделю. Домашних заданий в кружке нам не задавали: мы приходили, решали, кто сколько мог. Конечно, были и обычные уроки по школьной программе, но никаких других дополнительных занятий не было. Если математики слишком много — тоже плохо, может надоесть. Я знаю нескольких ребят, в том числе трёхкратного призёра Всероса по математике, которые побеждали в олимпиадах, занимаясь только в нашем кружке.

Я становился призёром заключительного этапа Всероссийской олимпиады школьников по математике три года подряд: в 9, 10 и 11 классах. Каждый раз я оказывался в числе «средних» призёров: не приближался к победителям, но и не был «в хвосте».

Так выглядит диплом призёра заключительного этапа Всероссийской олимпиады школьников

Олимпиада по математике – это важно

Термин «олимпиада» пришел к нам из Древней Греции, но в наше время приобрел новое значение, а именно трансформировался в такое понятие, как «олимпиада по математике». Такой вид конкурса умов и интеллекта становится с каждым годом все популярнее в кругу школьников.

Олимпиадные задания каждый год становятся интереснее и доступнее с появлением дистанционной формы участия. Школьники оттачивают навыки запоминания огромного количества информации, активируется скрытые способности мозга человека, ведь конкурсы по математики направлены именно на логическое мышление и использует непростые навыки вычисления и анализа.

Темы для подготовки к олимпиаде

Для участников разных возрастных групп (классов) предусмотрены соответствующие наборы заданий олимпиады, которые могут включать в себя задачи на следующие темы. Используйте их для подготовки и успешного решения заданий.

Олимпиада по математике 1-2 класс

  • Сложение и вычитание, счет предметов
  • Элементы комбинаторики для начальной школы
  • Продолжение числового ряда
  • Задачи с числами, решение числовых ребусов
  • Нахождение неизвестного компонента

Олимпиада по математике 3 класс

  • Использование основных арифметических действий
  • Нахождение периметра фигуры
  • Решение числового ребуса
  • Натуральные числа и десятичная запись числа
  • Продолжение числового ряда
  • Задачи с числами
  • Элементы комбинаторики для начальной школы

Олимпиада по математике 4 класс

  • Задачи на движение
  • Развитие навыков использования частей числа
  • Знание единиц измерения
  • Умножение и деление, сложение и вычитание
  • Решение числового ребуса
  • Числа, подсчет количества фигур

Олимпиада по математике 5 класс

  • Натуральные числа и шкалы
  • Сложение и вычитание натуральных чисел
  • Умножение и деление натуральных чисел
  • Периметр, площадь и объем
  • Обыкновенные дроби
  • Десятичные дроби
  • Умножение и деление десятичных дробей
  • Проценты

Олимпиада по математике 6 класс

  • Делимость натуральных чисел и признаки делимости
  • Сложение и вычитание дробей с разными знаменателями
  • Умножение и деление дробей
  • Отношения и пропорции
  • Положительные и отрицательные числа
  • Сложение и вычитание положительных и отрицательных чисел
  • Умножение и деление положительных и отрицательных чисел
  • Решение уравнений
  • Координаты на плоскости

Олимпиада по математике 7 класс

  • Математический язык и математическая модель
  • Линейная функция. График линейной функции.
  • Системы линейных уравнений
  • Одночлены. Арифметические операции над одночленами.
  • Многочлены. Арифметические операции над многочленами.
  • Разложение многочлена на множители
  • Функция y = x2
  • Начальные геометрические сведения
  • Треугольники
  • Параллельные прямые
  • Соотношения между сторонами и углами треугольника

Олимпиада по математике 8 класс

  • Алгебраические дроби
  • Функция y =  √x . Свойства квадратного корня.
  • Квадратичная функция
  • Функция y = k/x
  • Квадратные уравнения
  • Неравенства
  • Четырехугольники
  • Площадь
  • Подобные треугольники
  • Окружность

Олимпиада по математике 9-11 класс и 1-2 курс СПО

  • Задания с числами
  • Уравнения, содержащее квадратные корни
  • Нахождение области определения функций
  • Геометрические задачи
  • Текстовые задачи на смеси и сплавы
  • Элементы теории вероятности
  • Решение тригонометрических уравнений

Этапы Всероссийской олимпиады школьников

ВсОШ делится на четыре этапа: школьный, муниципальный, региональный и заключительный. Первый этап — самый массовый: в нём принимают участие около шести миллионов человек. А теперь представьте сложность отбора, если до финала доходят только несколько сотен. 

Школьный этап

Это ступень для всех желающих с 5 по 11 класс, так как квоты на количество участников нет. При желании можно выполнять задания более старших классов. Особенности этого этапа ВсОШ:

  • организуется школами, лицеями, гимназиями; 
  • проводится в сентябре-октябре;
  • по русскому языку и математике участниками могут быть четвероклассники;
  • проводится очно, но существует также интернет-этап (о нём расскажем чуть позже). 

Муниципальный этап

Ступень с более сложными заданиями. Чтобы попасть, нужно войти в списки преодолевших порог по каждому предмету и классу на школьном этапе. Особенности этого этапа ВсОШ:

  • организуется органами местного самоуправления в сфере образования, 
  • проводится в ноябре и декабре,
  • рассчитан на 7–11 классы.

Региональный этап

Помогает отобрать лучших среди победителей муниципального этапа. Здесь всё серьёзно — нужна академическая база за рамками углублённой школьной программы, подкованность, эрудиция и умение нестандартно мыслить. Особенности этапа:

  • организуется органами государственной власти субъектов Российской Федерации в сфере образования,
  • проводится в январе-феврале,
  • рассчитан на 9–11 классы. 

Заключительный этап

Вот и финал! Если вы добрались до последней ступени этой интеллектуальной битвы, значит, обошли ребят со всей России. Двери вузов уже открыты! Финальный этап ВсОШ:

  • организуется Министерством просвещения России,
  • проводится в марте–апреле. 

Переход от этапа к этапу

Вот некоторые нюансы того, как регулируется продвижение участников по уровням соревнования:

  • В первом этапе ВсОШ могут участвовать все желающие. На муниципальный приглашают тех, кто хорошо выступил на школьном, на региональный — отличившихся на муниципальном, и так далее. 
  • «Хорошо выступил» — это необязательно стал победителем или призёром. На каждом этапе Всеросса есть порог, при преодолении которого ученик проходит в следующий тур. 
  • Задания по классам, а не по возрасту. Например, задачки муниципального этапа строятся исходя из программы седьмого класса и старше, а начиная с регионального этапа — из программы старшей школы. В истории Всеросса был случай, когда в заключительном этапе участвовал четвероклассник: вундеркинд выполнял задания девятого класса, начиная со школьного этапа.
  • Победители и призёры прошлого года могут участвовать в том этапе, на котором остановились, минуя отборочные туры. Например, если в 2018 году вы стали призёром заключительного этапа по физике, то в 2019 году вы вправе снова приехать на него. Поэтому существуют двух- и даже трёхкратные победители финала Всеросса. 

Выбор вуза: между МФТИ и НИУ ВШЭ

Я выбирал между факультетом инноваций и высоких технологий МФТИ и факультетом компьютерных наук Вышки. В обоих вузах были кафедры «Яндекса», а я мечтал поработать в этой компании. В Вышке факультет только открывался, и было непонятно, что из этого выйдет. Поэтому я послушал совета родителей и лучших друзей — «выбрать что-то проверенное» — и пошёл на Физтех.

Пожалуй, на Физтехе приходится больше ботать. Для меня это плюс, так как получается воспитательный эффект — меньшая нагрузка меня бы расслабила. Сейчас я привык много трудиться и всегда знаю, чем себя занять. В любом случае надо быть готовым к тому, что придётся работать больше, чем в школе. Свободного времени у студентов сильных вузов мало, тусовки — редкая возможность.

По моим ощущениям, Физтех — это что-то более коллективное, ВШЭ — более индивидуальное. МФТИ расположен в Долгопрудном, студенты вместе и учатся, и отдыхают — это создаёт командную атмосферу. Сначала я этого не понимал, но теперь считаю атмосферу единения главным преимуществом Физтеха.

Задачи ЕГЭ по математике

В данном разделе приведены задачи ЕГЭ по математике (профильный уровень, сложная часть), а также диагностических и тренировочных работ МИОО начиная с 2009 года. Последнее пособие («Нестандартные задачи на ЕГЭ по математике») содержит авторские решения.

  • Тригонометрические уравнения на ЕГЭ по математике
  • Стереометрия на ЕГЭ по математике
  • Алгебраические уравнения и неравенства на ЕГЭ по математике
  • Показательные уравнения и неравенства на ЕГЭ по математике
  • Логарифмические уравнения и неравенства на ЕГЭ по математике
  • Планиметрия на ЕГЭ по математике
  • Экономические задачи на ЕГЭ по математике
  • Задачи с параметрами на ЕГЭ по математике
  • Нестандартные задачи на ЕГЭ по математике

Варианты математических олимпиад

Здесь содержатся варианты олимпиад по математике, используемые в повседневной работе. Ведь наилучший способ подготовиться к олимпиаде — это постоянно решать варианты последних лет.

Двузначное число в каждой ссылке означает год проведения финала олимпиады.

Всероссийская олимпиада школьников по математике

ШЭ МЭ РЭ ЗЭ
5 класс ,
,
,
,
,

,

6 класс ,
,
,
,
,

,

7 класс ,
,
,
,
,

,
,
,
,
,

8 класс ,
,
,
,
,

,
,
,
,
,

9 класс ,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

,
,
,
,

10 класс ,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

11 класс ,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

,
,
,
,

Примечания.

  • Муниципальный этап для 5 и 6 классов начиная с 2015/16 года не проводится.
  • Региональный и заключительный этапы для 5–8 классов не предусмотрены. Вместо них проводится олимпиада им. Леонарда Эйлера (для восьмиклассников).

Олимпиада им. Леонарда Эйлера

Олимпиада им. Леонарда Эйлера («Всеросс в младшей лиге») проводится с 2008/09 года.

Регион ,
,
,
,
,
,
,
,
,
,

Финал ,
,
,
,
,
,
,
,
,
,

Олимпиада «Покори Воробьёвы горы!»

5–6 классы ,
20a,
20b,
18.1a,
18.1b,
18.2a,
18.2b,
18.3a,
18.3b17.1a,
17.1b,
17.2a,
17.2b,
17.3a,
17.3b16.1a,
16.1b,
16.2a,
16.2b,
16.3a,
16.3b
7 класс ,
20a,
20b,
18.1a,
18.1b,
18.2a,
18.2b,
18.3a,
18.3b17.1a,
17.1b,
17.2a,
17.2b,
17.3a16.1a,
16.1b,
16.2a,
16.2b,
16.3a,
16.3b
,
,
,

8 класс ,
20a,
20b,
18.1a,
18.1b,
18.2a,
18.2b,
18.3a,
18.3b17.1a,
17.1b,
17.2a,
17.2b,
17.3a16.1a,
16.1b,
16.2a,
16.2b,
16.3a,
16.3b
,
,
,

9 класс ,
20a,
20b,
18.1a,
18.1b,
18.2a,
18.2b,
18.3a,
18.3b17.1a,
17.1b,
17.2a,
17.2b,
17.3a16.1a,
16.1b,
16.2a,
16.2b,
16.3a,
16.3b
,
,
,

10–11 классы ,
20.10,
20.1119.1,
19.2,
19.3,
19.4,
19.5,
19.618.1,
18.2,
18.3,
18.4,
18.5,
18.617.1,
17.2,
17.3,
17.4,
17.516.1,
16.2,
16.3,
16.4,
16.5,
16.615.1,
15.2,
15.3,
15.4,
15.5,
15.614.1,
14.2,
14.3,
14.4,
14.5,
14.6,
14.713.1,
13.2,
13.3,
13.4,
13.5,
13.712.1,
12.2,
12.3,
12.4,
12.5,
12.6,
12.711.1,
11.2,
11.3,
11.410.1,
10.2,
10.3,
10.4,
10.5

Олимпиада «Физтех»

Онлайн Финал
5 класс ,
,

6 класс ,
,

7 класс ,
,
,

8 класс ,
,
,
,

9 класс ,
,
,
,
,
,

20.1,
20.2; 
19.1,
19.218.1,
18.2; 
17.1,
17.216.1,
16.2,
16.3
10 класс ,
,
,
,
,
,

20.1,
20.2; 
19.1,
19.218.1,
18.2; 
17.1,
17.216.1,
16.2,
16.315.1,
15.2,
15.3
11 класс ,
,
,
,
,
,

20.1,
20.2; 
19.1,
19.218.1,
18.2; 
17.1,
17.216.1,
16.2,
16.315.1,
15.2,
15.314.1,
14.2; 
13.1,
13.212.1,
12.2; 
11.1,
11.210.1,
10.2; 
09.1,
09.2; 
,

Экзамен1994 — 2008 08.1,
08.2,
08.3,
08.407.1,
07.2,
07.3,
07.406.1,
06.2,
06.3,
06.405.1,
05.2,
05.304.1,
04.2,
04.303.1,
03.2,
03.302.1,
02.2,
02.301.1,
01.2,
01.3
00.1,
00.299.1,
99.298.1,
98.297.1,
97.2,
97.396.1,
96.2,
96.395.1,
95.2,
95.394.1,
94.2,
94.3

Примечания.

  • Очный финал для 5–8 классов пока не проводится.
  • В 2016/17 и 2017/18 годах на онлайн-этапе для 5 и 6 классов давалось задание 7 класса.
  • Очный финал для 10 класса впервые прошёл в 2015 году, а для 9 класса — в 2016 году.

Письменный экзамен мехмата МГУ и ДВИ МГУ

Мехмат ,
,
,
,
,
04-03,
04-07; 
03-03,
03-05,
03-0702-03,
02-05,
02-07; 
01-03,
01-05,
01-0700-03,
00-05,
00-07; 
99-03,
99-05,
99-0798-03,
98-05,
98-07; 
97-03,
97-05,
97-0796-03,
96-05,
96-07; 
95-03,
95-05,
95-0794-05,
94-07,
93-05,
93-07
ДВИ ,
,
,
,
,
,
,

ПРИЗЕРЫ ЗАКЛЮЧИТЕЛЬНОГО ЭТАПА ВСЕРОССИЙСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО МАТЕМАТИКЕ (Анапа, апрель-май 1993 г.)

 

Дипломы I степени

по 9 классам получили
Борисов А. — Нижний Новгород,
Куликов М. — п. Черноголовка Московской обл.,
Норин С. — Санкт-Петербург,
Петров К. — Москва,
Сай С. — Санкт-Петербург,
Челкак Д. — Санкт- Петербург;

по 10 классам —
Бондарко М. — Санкт- Петербург,
Тарасов А. — Москва;

по 11 классам —
Вольвовский Ю. — Москва,
Панов Д. — Москва,
Поздняков А. — Санкт-Петербург,
Розенблюм Е. — Санкт- Петербург,
Федоров Р. — Москва.

 

Дипломы II степени

по 9 классам получили
Евдокимов А. — Санкт-Петербург,
Есаулова В. — Санкт-Петербург,
Козлов М. — Санкт-Петербург,
Никитин П. — Мурманск,
Рудо Е. — Санкт-Петербург,
Салихов К. — Казань;

по 10 классам —
Добринская Н. — Саратов,
Дюбина А. — Санкт-Петербург,
Карасев Р. — Долгопрудный Московской обл.
Лапунов А. — Киров,
Сенцов Ю. — Калуга,
Уткин П. — Челябинск;

по 11 классам —
Бендерский А. — Москва,
Бирюк А. — Краснодар,
Замятин В. — Киров,
Зеленов С. — Киров,
Иншаков А. — Москва,
Карепов С. — Краснодар,
Кожанов И. — Краснодар,
Кочерова А. — Долгопрудный Московской обл.,
Маркелов С. — Москва,
Миронов И. — Санкт-Петербург,
Перлин В. — Санкт-Петербург,
Пименов К. — Санкт-Петербург,
Сосыка Е. — Краснодар,
Степанов А. — Москва.

Дипломы III степени

по 9 классам получили
Буфетов А. — Москва,
Бушков С. — Киров,
Ершов М. — Москва,
Зеленский О. — Темрюк Краснодарского края,
Игнатов Ф. — Тюмень,
Кадочников П. — Псков,
Кацев И. — Санкт-Петербург,
Курбин Д. — Омск,
Островский М. — Москва,
Рожков В. — Ангарск,
Смирнов Е. — Новосибирск;

по 10 классам —
Бархударян А. — Ереван, Армения,
Богданов И. — Пермь,
Бучкина И. — Москва,
Грушевский С. — Москва,
Кондратьев М. — Санкт-Петербург,
Крупенин С. — Москва,
Матвеев М. — Санкт-Петербург,
Поладян В. — Ереван, Армения,
Рабинович М. — Санкт-Петербург,
Филиппов В. — Санкт-Петербург,
Храпай М. — Тихвин, Ленинградской обл.,
Шувалов В. — Москва;

по 11 классам —
Алексеев М. — Нижний Новгород,
Базлов Ю. — Санкт-Петербург,
Брюхов Е. — Челябинск,
Бунина Е. — Москва,
Дроздов А. — Новосибирск,
Пионтковская И. — Тула,
Порошенко Е. — Новосибирск,
Семенов К. — Саратов,
Сонкин Д. — Калуга,
Топчий А. — Омск.

Как подготовиться к Всероссийской олимпиаде школьников

  1. Изучите задания прошедших олимпиад. Ознакомьтесь с требованиями, научитесь видеть логику олимпиадных заданий. 
  2. Готовьтесь к конкретным этапам. Если вам предстоит региональный, не замахивайтесь на задания заключительного. Бывают случаи, когда школьник с лёгкостью решает задачи из финала, но не может пройти муниципальный этап.
  3. Участвуйте в других олимпиадах. Они помогут потренироваться и приобрести опыт.
  4. Составьте план подготовки. Равномерно распределите нагрузку, распишите всё по неделям и дням — над какой темой вы будете работать, сколько часов потратите на её изучение или повторение, а также на решение. Обязательно учитывайте, сколько времени остаётся на учёбу, увлечения и отдых. 
  5. Используйте специализированные источники для подготовки. На олимпиадных курсах «Фоксфорда» ребята углубляют знания по выбранным предметам и учатся решать конкурсные задачки. Многие курсы ведут победители Всеросса, а также члены жюри олимпиад. 

Хотите поучаствовать во Всероссе или другой школьной олимпиаде? Изучите также вот эти статьи.

  • Как готовиться к олимпиадам по истории, обществознанию и праву →
  • Как готовиться к олимпиадам по физике →
  • Как готовиться к олимпиадам по математике →
  • Как готовиться к олимпиадам по русскому языку →

Призеры XXI Российской олимпиады школьников по математике (Саратов, 1995)

Первые премии

по девятым классам получил

Дуров Николай — Санкт-Петербург, с.ш. 239;

по десятым классам —

Норин Сергей — Санкт-Петербург, с.ш. 239;

по одиннадцатым классам —

Челкак Дмитрий — Санкт-Петербург, с.ш. 30.

по девятым классам получили
Старков Константин — Санкт-Петербург, с.ш. 30.
Шаповалов Данил — Иваново, с.ш. 13,
Спиридонов Антон — Киров,с.ш. 35,
Уздин Сергей — Санкт-Петербург, с.ш. 239,
Русаков Александр — Калуга, с.ш. 10,
Плахов Андрей — Сургут, с.ш. 1,
Сааль Александр — Санкт-Петербург, академическая гимназия,
Вашевник Андрей — Москва, с.ш. 57,
Шадрин Сергей — Москва, с.ш. 57,
Симоновский Андрей — Санкт-Петербург, с.ш. 239;

по десятым классам —

Запорожец Дмитрий — Санкт-Петербург, с.ш. 239,
Рудо Елена — Санкт-Петербург, с.ш. 239,
Егоров Александр — Санкт-Петербург, с.ш. 239,
Салихов Константин — Москва, СУНЦ МГУ,
Якимова Оксана — Москва, с.ш. 57,
Френкель Владимир — Санкт-Петербург, с.ш. 30,
Потапов Владимир — п. Черноголовка Московской обл., с.ш.82,
Слободянин Николай — Санкт-Петербург, с.ш. 239.
Есаулова Вероника — Санкт-Петербург, с.ш. 239,
Макарычев Юрий — Москва, с.ш. 57;

по одиннадцатым классам —
Островский Михаил — Москва, с.ш. 57,
Косовский Николай — Санкт-Петербург, с.ш. 30,
Куликов Михаил — Черноголовка Московской обл., с.ш. 82,
Петров Константин — Москва, с.ш. 7
Борисов Александр — Нижний Новгород, с.ш. 40.
Буфетов Александр — Москва, с.ш. 2,
Баргачев Виктор — Санкт-Петербург, Аничков лицей,
Подлинский Олег — Долгопрудный, с.ш. 5,
Кацев Илья — Санкт-Петербург, с.ш. 30,
Алехнович Михаил — Москва, с.ш. 57,
Никонов Игорь — Москва, с.ш. 345.

Третьи премии

по девятым классам получили

Смирнов Александр — Москва, с.ш. 57,
Малистов Алексей — Рязань, с.ш. 52,
Мельник Сергей — Санкт-Петербург, с.ш. 239
Мищенко Андрей — Ульяновск, с.ш. 2,
Севрюхин Юрий — Москва, с.ш. 57,
Самойлов Борис — п. Юрья Кировской обл., с.ш. 2,
Лепчинский Михаил — Челябинск, с.ш. 31,
Прудников Андрей — Москва, с.ш. 57,
Злобин Сергей — Киров, с.ш. 35;

по десятым классам —

Патрикеев Михаил — Екатеринбург, СУНЦ,
Сергеева Татьяна — Ижевск, с.ш. 41,
Рогожников Евгений — Калуга, с.ш. 41,
Белозеров Дмитрий — Долгопрудный, с.ш. 5,
Коровин Александр — Долгопрудный, с.ш. 5,
Крюков Виктор — Москва, с.ш. 57;

по одиннадцатым классам —

Зеленский Олег — Темрюк, с.ш. 13,
Кириенко Денис — Тула, с.ш. 73,
Попов Олег — Москва, с.ш. 57,
Прафенов Антон — Новосибирск, СУНЦ НГУ,
Дужин Федор — Переславль-Залесский.с.ш. 7,
Евдокимов Лев — Санкт-Петербург, с.ш. 239,
Романова Софья — Кирово-Чепецк, с.ш. 3,
Тиморин Владлен — Москва, с.ш. 1303,
Никулин Сергей — Киров, с.ш. 35.

Призеры XXIII Всероссийской математической олимпиады школьников (Калуга, 18–25.04.1997)

Дипломы I степени

по 9 классам получили
Поярков Алексей — Рыбинск, гимназия, 8 кл.;

по 10 классам —
Дуров Николай — Санкт-Петербург, ФМЛ 239,
Дилъман Степан — Челябинск, лицей 31,
Черепанов Евгений — Рыбинск, с.ш.17;

по 11 классам —
Уздин Сергей — Санкт-Петербург, ФМЛ 239.

Дипломы II степени

по 9 классам получили
Волк Денис — Москва, с.ш.57,
Фарутин Владимир — Санкт-Петербург, с.ш.610,
Дремов Владимир — Волгодонск, с.ш.24, 8 кл.,
Жиляев Владимир — Москва, с.ш.1543,
Петров Федор — Санкт-Петербург, ФМЛ 239,
Евсеев Антон — Москва, с.ш. 1260,
Мазин Михаил — Москва, с.ш.2,
Галкин Сергей — Москва, с.ш.2,
Горшков Алексей — Москва, с.ш.1543,
Тихомиров Сергей — Санкт-Петербург, ФМЛ 239,
Асомчик Александр — Новгород, с.ш. 117,
Певзнер Игорь — Киров, ФМЛ 35,
Хинцицкий Иван — Калуга, с.ш. 24;

по 10 классам —
Анно Ирина — Москва, с.ш.57,
Беленький Алексей — Санкт-Петербург, ФМЛ 239,
Розенберг Антон — Санкт-Петербург, ФМЛ 239,
Бахарев Федор — Санкт-Петербург, ФМЛ 239,
Сопкина Екатерина — Санкт-Петербург, ФМЛ 239,
Плахов Андрей — Волгодонск, с.ш. 19/20;

по 11 классам —
Митрофанов Михаил — Санкт-Петербург, ФМЛ 239,
Лепинский Михаил — Челябинск, лицей 31,
Мищенко Андрей — Москва, СУНЦ МГУ,
Самойлов Борис — Ростов-на-Дону, с.ш. 33,
Клепцын Виктор — Москва, с.ш. 57,
Шаповалов Данил — Иваново, с.ш. 33,
Тухвебер Сергей — Брянск, лицей 1.

Дипломы III степени

по 9 классам получили
Карвонен Максим — Рыбинск, с.ш. 2, 8 кл.,
Лебедев Алексей — с.Семеново, Уренского р-на Нижегородской обл., Семеновская с.ш.,
Лешко Денис — Ангарск, с.ш. 10,
Лифшиц Юрий — Санкт-Петербург, ФМЛ 239,
Мелещук Елизавета — Санкт-Петербург, Академическая гимназия,
Баскаков Илья — Москва, с.ш. 710,
Лузгарев Александр — Киров, ФМЛ 35,
Черников Алексей — Королев Московской обл., с.ш. 4,
Бейлин Андрей — Ростов-на-Дону, с.ш.58,
Ершов Денис — Москва, с.ш. 2,
Бабенко Максим — Саратов, ФТЛ 1,
Зинин Евгений — Краснодар, с.ш. 87,

 
Алишев Равиль — д. Кадырово Заикинского р-на, Татарстан, Татарско-турецкий лицей,
Шадрин Владимир — Киров, ФМЛ 35;

по 10 классам —
Етеревский Олег — Санкт-Петербург, ФМЛ 239,
Ткаченко Артем — Омск, с.ш. 88,
Водомеров Александр — Вологда, ВГЕМЛ,
Доценко Владимир — Москва, с.ш. 57,
Железняк Александр — Санкт-Петербург, ФМЛ 239,
Фирсова Татьяна — Саров, с.ш. 2,
Зинин Денис — Казань, ЭШЛ,
Рыбников Леонид — Москва, с.ш. 57,
Растатурин Алексей — Краснодар, с.ш. 48;

по 11 классам —
Малистов Алексей — Рязань, лицей 52,
Прудников Андрей — Москва, с.ш. 57,
Рафиков Евгений — Пермь, с.ш. 146,
Чернышев Сергей — Ярославль, с.ш. 33,
Шатохин Евгений — Армавир, гимназия 1,
Лившиц Евгений — Ижевск, с.ш. 30,
Новосельцев Андрей — Ростов-на- Дону, с.ш. 5,
Фирдман Илья — Омск, с.ш. 74,
Вашевник Андрей — Москва, с.ш. 57,
Злобин Сергей — Киров, ФМЛ 35,
Потапов Алексей — Сосновый Бор Ленинградской обл., с.ш. 8,
Спиридонов Антон — Киров, ФМЛ 35,
Петров Александр — Первоуральск, с.ш. 7,
Тимошенко Егор — Томск, с.ш. 7,
Федотовская Екатерина — Киров, ФМЛ 35.

Как внести исправления на эту страницу

Несмотря на то, что большинство этих списков взято из разных официальных публикаций,
(в том числе финальных протоколов жюри или публикаций в «Кванте»), очевидно, что
в любом длинном списке есть и прямые опечатки, и разные возможности для улучшения.
Никакого способа это собирать и делать, кроме как усилиями сообщества, не придумано.
Всякий желающий исправить опечатку, добавить своё имя (вместо инициала), поставить ссылку на свою страницу и т.п.
волен написать письмо на адрес olymp@mccme.ru

Математика вокруг нас

Друзья, оглянитесь! Вокруг нас появляется столько новых технологий и изобретений, просто невозможных без математики; навыки вычислений, умение правильно считать требует от Вас каждая хорошая профессия, не говоря уже о просто походе за покупками.

Математика – «царица наук», и это не случайно – она существует во всем.

В наше время у нас есть отличная возможность учиться и развиваться каждый день на протяжении всей жизни, поэтому математические навыки и умения улучшать и преумножать никогда не поздно!

Основоположник современной механики и физики Галилео Галилей говорил:

«Математика — это язык, на котором написана книга природы».

От познания этой великой науки можно получить неимоверное удовольствие.

Математический конкурс, безусловно, очень полезен для всех школьников, в нем отрабатывается безукоризненный подход к пониманию механики окружающего мира, улучшается логическое мышление и способность действовать, четко анализируя ситуацию. Улучшение памяти при этом является закономерным приятным последствием.

Льготы для победителей и призеров. Вопросы и Ответы

Какие олимпиады могут давать льготы при поступлении в высшие учебные заведения?

Согласно действующему законодательству (порядок приёма граждан в ВУЗы, закон «Об образовании»), льготы при поступлении в ВУЗ могут быть предоставлены только победителям и призёрам заключительного этапа Всероссийской олимпиады школьников, а также победителям и призёрам олимпиад, вошедшим в Перечень олимпиад школьников на 2012-2013 учебный год.

Что даёт диплом победителя/призёра регионального (муниципального) этапа Всероссийской олимпиады школьников?

Статус победителя/призёра регионального (муниципального) этапа, при условии продолжения обладателем диплома обучения в общеобразовательном учреждении в следующем году, даёт возможность участвовать во Всероссийской олимпиаде по этому предмету с регионального (муниципального) этапа, минуя предыдущие.

Никаких льгот при поступлении в ВУЗ данный диплом не даёт.

Что даёт диплом победителя/призёра заключительного этапа Всероссийской олимпиады школьников?

Данный диплом, при наличии у его обладателя права на получение высшего образования за счёт средств бюджета Российской Федерации, даёт ему право зачисления без вступительных испытаний в ВУЗы на направления подготовки, соответствующие профилю олимпиады.

На направления подготовки, не соответствующие профилю олимпиады, результаты победителей и призёров могут быть засчитаны как наивысшие результаты вступительных испытаний по этому предмету (в случае их наличия).

Вопрос о соответствии профиля олимпиады направлению подготовки решает ученый совет Вуза.

Какие бывают льготы победителям и призёрам олимпиад из Перечня?

Льготы бывают двух видов: зачисление без экзаменов и засчитывание максимальной оценки за ЕГЭ по предмету или за дополнительное внутреннее вступительное испытание.

Кто определяет льготы по дипломам олимпиад из Перечня? Когда они будут утверждены и опубликованы? Почему ВУЗы дают разные льготы за один и тот же диплом?

Согласно приказу №285, льготы при поступлении для победителей и призёров олимпиад из Перечня предоставляются по решению вуза.

По этой причине Оргкомитет обращается к участникам, их учителям и родителям с просьбой: ВСЕ вопросы по поводу льгот адресовать НЕ Оргкомитетам олимпиад, а исключительно приемным комиссиям соответствующих факультетов интересующих Вас вузов.

Как узнать, какая олимпиада какого уровня?

В настоящий момент доступен проект приказа Министерства Образования и Науки РФ «Об установлении уровней олимпиад школьников«. В скором времени он будет подписан и опубликован в «Российской Газете».

Какие документы являются основанием для предоставления приёмной комиссией ВУЗа льготы при поступлении?

В соответствии с письмом МОН РФ, в качестве документа об олимпиаде абитуриент имеет право предоставить Диплом или Свидетельство о внесении записи в общероссийскую базу данных победителей и призёров олимпиад школьников (далее — электронная версия диплома), которое может быть верифицировано приёмными комиссиями на сайте миролимпиад.рф.

Могу ли я несколько раз воспользоваться своей льготой?

Льготой «Зачисление без вступительных экзаменов» можно воспользоваться не более одного раза независимо от того, в каком количестве олимпиад, дающих такую льготу, человек победил.

Льготой «Максимальный балл по вступительному испытанию» можно пользоваться сколько угодно раз (в том числе по дипломам, предоставляющим льготу «Зачисление без вступительных экзаменов» в другие ВУЗы).

Где взять электронную версию диплома олимпиады из Перечня?

После подписания приказа об уровнях олимпиад школьников, электронные версии дипломов будут доступны для скачивания на сайте РСОШ.

Я не могу распечатать электронную версию диплома. В дипломе неверно указаны мои ФИО или школа. Что делать?

В случае, если Ваш диплом не распечатывается или содержит ошибки, обратитесь за помощью в оргкомитет соотвествующей олимпиады или в службы РСОШ.

Как я могу получить оригинал своего диплома (не электронную версию)?

Данную информацию Вам стоит уточнить у организаторов конкретной олимпиады. Контактные данные олимпиад по праву можно найти в соответствующем разделе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector