Тригонометрические уравнения и преобразования

Содержание:

Советы по подготовке к ЕГЭ по профильной математике 2021

Повторите теорию

Не откладывайте на потом. Вспомните все определения, формулы и понятия перед там, как приступать к решению задач. Попробуйте писать формулы по памяти, а потом сверять

И не забывайте: важно не вызубрить темы, а понять их. 

Не пропускайте первую часть

Одна из грубых ошибок — переходить сразу к решению второй части ЕГЭ. Многие задачи из первой решаются довольно просто, но не стоит их недооценивать. Они составлены так, чтобы проверить не только навык решения, но и внимательность к деталям. Прорабатывайте номера из первой части, ведь для достижения цели важен каждый балл. 

Внимательно читайте текст заданий

Смотрите, в каких единицах измерения требуется ответ и нужно ли его округлять

В задании №7 важно понимать, какой график вам дан — производной или функции. От этого зависит ответ на заданный вопрос

В экономической задаче №17 нельзя использовать готовую формулу. Вам нужно написать математическую модель самостоятельно.

Научитесь хорошо считать в уме

Учитесь вычислять без калькулятора — некоторые задания требуют навыка быстрого счёта. К тому же, на экзамене вам нужно оставить как можно больше времени на сложные задачи и проверку.

Проверяйте решения и ответы

Например, убедитесь, что правильно перевели число из обычной дроби в десятичную. Арифметические ошибки также часто встречаются в задаче на финансовую математику

В задании №9 обратите внимание на знаки, особенно если вам попались тригонометрические функции

Также важно без ошибок определить ограничения x в задаче №13. Если исходное уравнение содержит tgx, то — cosx≠0

Если уравнение содержит квадратный корень, подкоренное выражение — ≥0

Если исходное уравнение содержит tgx, то — cosx≠0. Если уравнение содержит квадратный корень, подкоренное выражение — ≥0.

Проверяйте свои знания

Вы можете пройти тест на бесплатном вводном занятии с преподавателем или на сайте ФИПИ. Так вы узнаете, что помните хорошо, а что нужно повторить. Также вы можете воспользоваться нашей библиотекой знаний с полезными материалами для подготовки. Нужно только зарегистрироваться на сайте. 

Не бойтесь второй части 

Смело решайте задания из второй части. Попробуйте справиться с заданиями №13 и №15. Скорее всего, они вам хорошо знакомы. Чаще всего №13 оказывается не таким уж и сложным. Если вы хорошо знаете геометрию, начните с №14 или №16. Если вам по душе алгебра, решайте задачи на параметр и свойства чисел — №18, 19.

Отдыхайте 

Составьте комфортное расписание занятий. Подготовка к ЕГЭ по профильной математике в 2021 не должна быть тяжким бременем. Проводите больше времени на свежем воздухе, встречайтесь с друзьями и не забывайте про здоровый сон. 

Применение формул сокращенного умножения

1. Квадрат суммы раскладывается на квадрат первого числа плюс удвоенное произведение первого числа на второе число и плюс квадрат второго числа.

$(a+b)^2=a^2+2ab+b^2$

2. Квадрат разности раскладывается на квадрат первого числа минус удвоенное произведение первого числа на второе и плюс квадрат второго числа.

$(a-b)^2=a^2-2ab+b^2$

3. Разность квадратов раскладывается на произведение разности чисел и их сумму.

$a^2-b^2=(a+b)(a-b)$

4. Куб суммы равен кубу первого числа плюс утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа плюс куб второго числа.

$(a+b)^3=a^3+3a^2b+3ab^2+b^3$

5. Куб разности равен кубу первого числа минус утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа и минус куб второго числа.

$(a-b)^3=a^3-3a^2b+3ab^2-b^3$

6. Сумма кубов равна произведению суммы чисел на неполный квадрат разности.

$a^3+b^3=(a+b)(a^2-ab+b^2)$

7. Разность кубов равна произведению разности чисел на неполный квадрат суммы.

$a^3-b^3=(a-b)(a^2+ab+b^2)$

Количество баллов, которые можно получить.

На ЕГЭ по математике возможно заработать 31 первичных балла. При этом один первичный балл будет равняться четырём или пяти вторичным.

Для распределения времени на экзамене поставьте для себя вопрос: «какой бал мне нужен?»Если целью вашей работы является средний балл, то есть семьдесят баллов, то работа не может быть закончена через час. Поспешное решение может повлечь за собой массу ошибок

Для набора 70 баллов, основное внимание необходимо сконцентрировать на первой части. С 10:00 до 11:20 необходимо решить всю первую часть ЕГЭ по математике

Затем передохнуть две минуты.С 11:30 до 12:10 необходимо заняться проверкой выполненного задания и переписать ответы в бланк. Если целью является получение большего количества баллов, то с 10:00 до 10:20 решаются все тестовые задания, с которыми не должно быть трудностей.С 10:20 до 11:30 решаются в чистовике задания №13, 15, 17.С 11:30 до 12:30 выполняются задания №14 и №16 в порядке сложности.С 12:30 до 12:35 ведётся отдых.С 12:35 решаются номера №18. И все переписывается в бланки.

Принцип 5 «Работа над ошибками»

Чтобы качественно подготовиться к ЕГЭ, да и просто освоить математику, нужно научить ребят искать собственные ошибки. Как правило, ученики страдают от невнимательности, часто ошибаются в одних и тех же трудных местах, например, отбрасывая логарифмы с основаниями меньшими единицы забывают поменять знак неравенства или, извлекая корень из числа в квадрате, теряют модуль.

В наших силах «подстелить соломку»

Акцентируя внимание ребят на потенциально проблемном месте в ходе решения, раз за разом напоминая, что именно «здесь» стоит быть предельно аккуратным, мы способны существенно снизить частоту таких досадных ошибок. Более того, получая «подозрительные» ответы, знающие свои «слабые» места ученики намного чаще находят ошибки в решении

Внимание! Мы расскажем о методе рационализации на

Examer

Сайт — examer.ru/ege_po_matematike/2021/ Длительность обучения — индивидуально. Стоимость обучения — бесплатно для самостоятельной подготовки или 2 490 рублей в режиме Турбо с видеоуроками и разбором домашних заданий.

На этом ресурсе школьники могут готовиться только к экзамену профильного уровня. На Examer нет репетиторов или уроков как таковых. Здесь есть теория для самостоятельного изучения и задания для практической отработки. Можно заниматься дома, а можно — в любом удобном месте, поскольку у ресурса есть мобильные приложения для Android и iOS.

Существенный недостаток — отсутствие разборов заданий. Если у ребенка не получается решить какую-то задачу, с проблемой он будет разбираться самостоятельно. Для этого можно почитать теоретические материалы или воспользоваться поиском в интернете. Безусловный плюс ресурса — бесплатный доступ на неограниченной время. Это прекрасная возможность для ребят из малообеспеченных семей подтянуть свои знания по математике и подготовиться к ЕГЭ.

Перед началом обучения система попросит пройти тест на определение начального уровня знаний и предполагаемого результата ЕГЭ по математике. Затем для каждого в автоматическом режиме составляется индивидуальный план подготовки. Студент проходит модули последовательно. Каждый новый урок будет открыт после успешного решения задач по предыдущему.

Важно!
В бесплатном режиме возможности системы ограничены. Максимальную эффективность дает Турбокурс, в котором предусмотрено 12 видеоуроков в месяц

Домашние задания с проверкой преподавателя, тестирование, помощь в решении трудных задач.

Квадратное уравнение и формула разложения квадратного трехчлена на множители

Пусть квадратное уравнение имеет вид:

Тогда дискриминант находят по формуле:

Если D > 0, то квадратное уравнение имеет два корня, которые находят по формуле:

Если D = 0, то квадратное уравнение имеет один корень (его кратность: 2), который ищется по формуле:

Если D < 0, то квадратное уравнение не имеет корней. В случае когда квадратное уравнение имеет два корня, соответствующий квадратный трехчлен может быть разложен на множители по следующей формуле:

Если квадратное уравнение имеет один корень, то разложение соответствующего квадратного трехчлена на множители задается следующей формулой:

Только в случае если квадратное уравнение имеет два корня (т.е. дискриминант строго больше ноля) выполняется Теорема Виета. Согласно Теореме Виета, сумма корней квадратного уравнения равна:

Произведение корней квадратного уравнения может быть вычислено по формуле:

Парабола

График параболы задается квадратичной функцией:

При этом координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины:

Игрек вершины параболы:

Принцип 1. «Заложите крепкий фундамент»

Бесконечно жаль тратить время и так очень коротких занятий на отработку простейших, элементарных навыков, но именно они — залог будущего успеха ваших учеников! Парадокс состоит в том, что чем больше времени мы потратим на освоение базового набора знаний, тем больше мы его впоследствии сэкономим при решении более сложных заданий. Например, я всегда очень долго и кропотливо учу ребят решать элементарные тригонометрические уравнения, доводя их навыки до автоматизма. Но как только этот с материал станет понятнее, чем дважды два, мы с фантастической скоростью разбираем методы решения более сложных задач. И здесь открывается настоящий простор для экономии времени, как за счет скорости работы с простейшими заданиями, которые всегда встречаются «внутри» сложных, так и за счет возможности разбирать исключительно методы, оставляя их техническую реализацию на дом. 

У данного принципа есть и еще одна положительная черта: ребята не только набивают руку, но и приобретают уверенность в себе, своих знаниях и силах, перестают считать себя гуманитариями и начинают действительно понимать предмет. 

Задания второй части профильного экзамена

В эту часть вошли непростые, комбинированные задачи, однако научиться решать можно каждую.

Задание №13 посвящено уравнениям: тригонометрическим, показательным и другим. Всё чаще в этом номере дают комбинаторное уравнение — логарифм плюс тригонометрия и другие вариации.

В задании №14 вам предлагается решить стереометрическую задачу. Она может быть на объём многогранников и их сечения или нахождение расстояния между прямой и плоскостью. Чтобы решить эти задачи, нужно хорошо знать теорию и много практиковаться. 

В задании №15 вам встретятся неравенства: смешанные, иррациональные или неравенства, содержащие модуль.

Для решения задачи №16 нужны твёрдые знания по планиметрии. Это задание проверяет ваше умение находить элементы трапеции, треугольника, окружности и других фигур. 

Задание №17 часто называют экономикой, так как оно связано с финансовой математикой. Вам может попасться задача о кредитах: например, на поиск суммы платежа, процентной ставки или срока. Также в этом номере вы можете встретить задачу на вклады или оптимизацию. Решение потребует большого количества вычислений, поэтому развивайте навык быстрого счёта.

Одно из самых сложных заданий ЕГЭ по профильной математике 2021 — №18. Это задача с параметром. В школе эту тему часто обходят стороной. Прежде чем приниматься за решение, нужно хорошо повторить функции, их свойства и графики.

Задание №19 — нестандартная задача, можно сказать, олимпиадного уровня. Она проверяет умение строить и исследовать простейшие математические модели. Вам помогут логика и хорошее знание математики в целом.

Тригонометрия

Пусть имеется прямоугольный треугольник:

Тогда, определение синуса:

Определение косинуса:

Определение тангенса:

Определение котангенса:

Основное тригонометрическое тождество:

Простейшие следствия из основного тригонометрического тождества:

Синус двойного угла:

Косинус двойного угла:

Тангенс двойного угла:

Котангенс двойного угла:

Тригонометрические формулы сложения

Синус суммы:

Синус разности:

Косинус суммы:

Косинус разности:

Тангенс суммы:

Тангенс разности:

Котангенс суммы:

Котангенс разности:

Тригонометрические формулы преобразования суммы в произведение

Сумма синусов:

Разность синусов:

Сумма косинусов:

Разность косинусов:

Сумма тангенсов:

Разность тангенсов:

Сумма котангенсов:

Разность котангенсов:

Произведение синусов:

Произведение синуса и косинуса:

Произведение косинусов:

Формулы понижения степени

Формула понижения степени для синуса:

Формула понижения степени для косинуса:

Формула понижения степени для тангенса:

Формула понижения степени для котангенса:

Формула половинного угла для тангенса:

Формула половинного угла для котангенса:

Формулы приведения задаются в виде таблицы:

Цель и задачи изучения математики

При изучении дисциплины обеспечивается фундаментальная подготовка студента по таким разделам математики как, линейная и векторная алгебра, аналитическая геометрия, математический анализ, теория вероятностей и математическая статистика, соблюдается связь с дисциплинами: вычислительная математика, информатика, физика; происходит знакомство со стержневыми проблемами математики, базовыми положениями, навыками и понятиями, обязательными для прочного усвоения последующих дисциплин и практического использования полученных знаний в решении конкретных задач, которые ставятся перед инженером.

«Умскул»

Сайт: https://umschool.net; https://vk.comТелефон: 8 (800) 444-37-50Стоимость: бесплатные пробные занятия, от 3090 р./мес.

Готовят к ЕГЭ по профильной и базовой математике на высокие баллы в режиме онлайн. Объясняют до тех пор, пока не станет понятно.

  • Более 2 тыс. положительных отзывов
  • Подготовили 10 стобалльников
  • 500 учеников написали профиль на 90+ баллов и 2000 учеников на 80+
  • Бесплатные онлайн-занятия каждую неделю

Занятия проходят в формате онлайн-трансляций: 12 вебинаров в месяц по 2-2,5 часа.

Преподаватели используют авторские методики подготовки, которые опробованы на тысячах учеников. Каждое домашнее задание проверяется и дается обратная связь. К урокам выдаются рабочие тетради.

Чтобы процесс подготовки был еще эффективнее, предусмотрены:

  • Подсказки при решении заданий на платформе
  • Конспекты занятий
  • Баллы за Д/З, которые можно обменять на призы и скидки
  • Ежемесячные пробные варианты ЕГЭ для практики на реальных примерах
  • Индивидуальные ДЗ по темам, которые вам нужно закрепить
  • Зачеты и проверки через звонки в WhatsApp (тарифы PRO и HARD)

Несовместные события

Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)

Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:

$Р(А+В)=Р(А)+Р(В)$

На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение:

Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:

$Р(А+В)=Р(А)+Р(В)$

$Р = 0,3+0,18=0,48$

Ответ: $0,48$

Бесплатно

ЕГЭ.рф

Сайт: https://егэ.рф

Платформа бесплатного тестирования уровня подготовки школьников к ЕГЭ по математике базового и профильного уровней — на основе реальных заданий от ФИПИ 2021.

Первая часть экзамена будет проверена сразу после сдачи и ты увидишь свои результаты незамедлительно. Также ты сможешь получить детальный разбор ошибок в письменных заданиях от экспертов ЕГЭ.

А по итогу ты сможешь сопоставить свои результаты с проходными баллами в ВУЗы и выбрать, куда поступать.

«4ЕГЭ»

Сайт: https://4ege.ru

Каждый видеоурок состоит из двух основных частей: простое изложение самой важной и необходимой теории по заданной теме и решения основных задач ЕГЭ

«Синергия»

Сайт: https://synergy.ru

Для вашего удобства на сайте собрано все, что может потребоваться для подготовки к экзамену по математике:

  • Демоверсии и КИМы, ЕГЭ предыдущих периодов
  • Теория и практика по каждому типу задания
  • Официальная информация и новости

Весь теоретический материал по математике разделен на вопросы из ЕГЭ и собран в файлы. Просто выбирайте интересующую тему (вопрос, раздел), открывайте лист и повторяйте (или учите, если забыли).

Информация изложена кратко, но просто и понятно. Схематическая подача поможет все быстро запомнить.

В практическом разделе собраны готовые решения самых сложных тестов. Просто выбирайте задание и смотрите подробный план решений задач того или иного типа.

Для удобства разбора листы разделены на 2 части. В первой — только сами задачи, которые можно решать самостоятельно. Во второй части — те же задачи, но с расписанным решением.

«РешуЕГЭ»

Сайт: https://mathb-ege.sdamgia.ru

Здесь регулярно выкладывают тренировочные варианты ЕГЭ по математике базового и профильного уровней. Каждый месяц — новый вариант. По окончании тестирования система проверит ваши ответы, покажет правильные решения и выставит оценку.

Чтобы тренироваться по определённым темам, вы можете составить свой вариант — по конкретным разделам задачного каталога.

Также на сайт размещен курс из 100 занятий «Д. Д. Гущин. Готовимся к ЕГЭ по профильной математике«. В нем рассмотрены все экзаменационные темы, дано большое количество заданий из школьной математики, материалов ЕГЭ, математических олимпиад и вузовских вступительных испытаний.

Занятия включают в себя конспекты, видеоуроки с разбором простых и сложных случаев, упражнения для мгновенной самопроверки и варианты для самостоятельной работы.

Для начала нужно авторизоваться на сайте и пройти входное тестирование, чтобы был построен ваш индивидуальный образовательный маршрут.

«Математика ЕГЭ 100БАЛЛОВ»

Сайт: https://vk.com

Страница для самоподготовки к ЕГЭ по математике волонтерского некоммерческого проекта. Ежедневно размещаются различные задания и полезные материалы для подготовки к экзамену по математике.

Есть теория в картинках, видеоуроки по отдельным темам, практические задания и пробные варианты ЕГЭ.

«Математикс»

Сайт: https://www.youtube.com

Канал создан в помощь тем, кто готовится к ЕГЭ по математике.

Здесь вы найдете плейлисты, посвященные следующим темам:

  • Уравнениям и Неравенствам №13 и №15 ЕГЭ
  • Задачам ЕГЭ №17 №18 №19
  • Стереометрии и Планиметрии №14 и №16 ЕГЭ
  • Высшей Математике (Теория с примерами)
  • Разборам задач из вариантов Ларина
  • Разборам вариантов СтатГрад

«ЕГЭ и ОГЭ на 80-ballov. Годограф»

Сайт: https://www.youtube.com

На ютуб-канале выложены короткие видеоуроки по основным темам подготовки «ЕГЭ по Математике 2021 80 баллов». Всего в плейлисте 261 видео. Для бесплатного просмотра открыто примерно 20% полного курса.

Полный курс, включающий в себя не только видеоматериал, доступен по платной подписке на сайте проекта 80-ballov.ru. Можно сначала оценить качество материала и подачи и, при необходимости, оплатить полный доступ.

Канал Бориса Трушина

Сайт: https://www.youtube.com

Личный канал преподавателя математики онлайн-школы «Фоксфорд».

Здесь вы найдете короткие и ёмкие видеоуроки по следующим темам:

  • Задания 1-12. ЕГЭ. Математика. Профильный уровень
  • Задания 13-19. ЕГЭ. Математика. Профильный уровень
  • Разборы вариантов ЕГЭ
  • Подборки по темам: Квадратный трёхчлен, Планиметрия, Неравенства, Теория вероятностей, Тригонометрия, Теория чисел и др.

Подготовка ко второй части экзамена

При выполнении ЕГЭ по информатике необходимо уделить особое внимание решению задач с развёрнутым ответом: №24, 25, 26 и 27. Их успешное выполнение позволит набрать больше итоговых баллов

Но и цена ошибки во время их выполнения выше — потеря каждого первичного балла чревата тем, что вы не пройдёте по конкурсу, ведь 3-4 итоговых балла за ЕГЭ при высокой конкуренции на IT-специальности могут стать решающими

Их успешное выполнение позволит набрать больше итоговых баллов. Но и цена ошибки во время их выполнения выше — потеря каждого первичного балла чревата тем, что вы не пройдёте по конкурсу, ведь 3-4 итоговых балла за ЕГЭ при высокой конкуренции на IT-специальности могут стать решающими.

Каждое из этих заданий имеет свою направленность:

  • 24 задача — поиск ошибки,
  • 25 задача — составление простой программы,
  • 26 задача — теория игр,
  • 27 задача — программирование сложной программы.

Основную трудность на экзамене представляет 27 задача. Её решает только 60–70% пишущих ЕГЭ по информатике. Особенность заключается в том, что к ней невозможно подготовиться заранее. Каждый год на экзамен выносится принципиально новая задача. При решении задачи №27 нельзя допустить ни одной смысловой ошибки.

Теория к заданию 12 из ЕГЭ по математике (профильной)

Наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение ординаты на рассматриваемом интервале.

Чтобы найти наибольшее или наименьшее значение функции необходимо:

  1. Найти производную функции $f'(х)$
  2. Найти стационарные точки, решив уравнение $f'(х)=0$
  3. Проверить, какие стационарные точки входят в заданный отрезок.
  4. Вычислить значение функции на концах отрезка и в стационарных точках из п.3
  5. Выбрать из полученных результатов наибольшее или наименьшее значение.

Чтобы найти точки максимума или минимума необходимо:

  1. Найти производную функции $f'(х)$
  2. Найти стационарные точки, решив уравнение $f'(х)=0$
  3. Разложить производную функции на множители.
  4. Начертить координатную прямую, расставить на ней стационарные точки и определить знаки производной в полученных интервалах, пользуясь записью п.3.
  5. Найти точки максимума или минимума по правилу: если в точке производная меняет знак с плюса на минус, то это будет точка максимума (если с минуса на плюс, то это будет точка минимума). На практике удобно использовать изображение стрелок на промежутках: на промежутке, где производная положительна, стрелка рисуется вверх и наоборот.

Таблица производных некоторых элементарных функций:

Функция Производная
$c$ $0$
$x$ $1$
$x^n, n∈N$ $nx^{n-1}, n∈N$
${1}/{x}$ $-{1}/{x^2}$
${1}/x{^n}, n∈N$ $-{n}/{x^{n+1}}, n∈N$
$√^n{x}, n∈N$ ${1}/{n√^n{x^{n-1}}, n∈N$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ ${1}/{cos^2x}$
$ctgx$ $-{1}/{sin^2x}$
$cos^2x$ $-sin2x$
$sin^2x$ $sin2x$
$e^x$ $e^x$
$a^x$ $a^xlna$
$lnx$ ${1}/{x}$
$log_{a}x$ ${1}/{xlna}$

Основные правила дифференцирования

1. Производная суммы и разности равна производной каждого слагаемого

$(f(x) ± g(x))′= f′(x)± g′(x)$

Пример:

Найти производную функции $f(x) = 3x^5 – cosx + {1}/{x}$

Производная суммы и разности равна производной каждого слагаемого

$f′(x)=(3x^5)′–(cosx)′+({1}/{x})’=15x^4+sinx-{1}/{x^2}$

2. Производная произведения.

$(f(x)∙g(x))′=f′(x)∙g(x)+f(x)∙g(x)′$

Пример:

Найти производную $f(x)=4x∙cosx$

$f′(x)=(4x)′∙cosx+4x∙(cosx)′=4∙cosx-4x∙sinx$

3. Производная частного

$({f(x)}/{g(x)})’={f^'(x)∙g(x)-f(x)∙g(x)’}/{g^2(x)}$

Пример:

Найти производную $f(x)={5x^5}/{e^x}$

$f'(x)={(5x^5)’∙e^x-5x^5∙(e^x)’}/{(e^x)^2}={25x^4∙e^x-5x^5∙e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))′=f′(g(x))∙g′(x)$

Пример:

$f(x)= cos(5x)$

$f′(x)=cos′(5x)∙(5x)′= — sin(5x)∙5= -5sin(5x)$

Пример:

Найдите точку минимума функции $y=2x-ln⁡(x+11)+4$

Решение:

1. Найдем ОДЗ функции: $х+11>0; х>-11$

2. Найдем производную функции $y’=2-{1}/{x+11}={2x+22-1}/{x+11}={2x+21}/{x+11}$

3. Найдем стационарные точки, приравняв производную к нулю

${2x+21}/{x+11}=0$

Дробь равна нулю если числитель равен нулю, а знаменатель не равен нулю

$2x+21=0; x≠-11$

$2х=-21$

$х=-10,5$

4. Начертим координатную прямую, расставим на ней стационарные точки и определим знаки производной в полученных интервалах. Для этого подставим в производную любое число из крайней правой области, например, нуль.

$y'(0)={2∙0+21}/{0+11}={21}/{11}>0$

5. В точке минимума производная меняет знак с минуса на плюс, следовательно, точка $-10,5$ — это точка минимума.

Ответ: $-10,5$

Пример:

Найдите наибольшее значение функции $y=6x^5-90x^3-5$ на отрезке $$

Решение:

1. Найдем производную функции $y′=30x^4-270x^2$

2. Приравняем производную к нулю и найдем стационарные точки

$30x^4-270x^2=0$

Вынесем общий множитель $30x^2$ за скобки

$30x^2(x^2-9)=0$

$30x^2(х-3)(х+3)=0$

Приравняем каждый множитель к нулю

$x^2=0 ; х-3=0; х+3=0$

$х=0;х=3;х=-3$

3. Выберем стационарные точки, которые принадлежат заданному отрезку $$

Нам подходят стационарные точки $х=0$ и $х=-3$

4. Вычислим значение функции на концах отрезка и в стационарных точках из п.3

$y(-5)= 6∙(-5)^5-90∙(-5)^3-5=6∙(-3125)+90∙125-5= -18750+11250-5=-7505$

$y(-3)= 6∙(-3)^5-90∙(-3)^3-5=-1458+2430-5=967$

$y(0)= -5$

$y(1)= 6∙1^5-90∙1^3-5=6-90-5= -89$

Наибольшее значение равно $967$

Ответ: $967$

Задачи ЕГЭ по математике

В данном разделе приведены задачи ЕГЭ по математике (профильный уровень, сложная часть), а также диагностических и тренировочных работ МИОО начиная с 2009 года. Последнее пособие («Нестандартные задачи на ЕГЭ по математике») содержит авторские решения.

  • Тригонометрические уравнения на ЕГЭ по математике
  • Стереометрия на ЕГЭ по математике
  • Алгебраические уравнения и неравенства на ЕГЭ по математике
  • Показательные уравнения и неравенства на ЕГЭ по математике
  • Логарифмические уравнения и неравенства на ЕГЭ по математике
  • Планиметрия на ЕГЭ по математике
  • Экономические задачи на ЕГЭ по математике
  • Задачи с параметрами на ЕГЭ по математике
  • Нестандартные задачи на ЕГЭ по математике

Показательные уравнения

Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.

$a^x=b$

При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

$a^n·a^m=a^{n+m}$

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

$a^n:a^m=a^{n-m}$

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

$(a^n)^m=a^{n∙m}$

4. При возведении в степень произведения в эту степень возводится каждый множитель

$(a·b)^n=a^n·b^n$

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

$({a}/{b})^n={a^n}/{b^n}$

6. При возведении любого основания в нулевой показатель степени результат равен единице

$a^0=1$

7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби

$a^{-n}={1}/{a^n}$

${a^{-n}}/{b^{-k}}={b^k}/{a^n}$

8. Радикал (корень) можно представить в виде степени с дробным показателем

$√^n{a^k}=a^{{k}/{n}}$

Виды показательных уравнений:

1. Простые показательные уравнения:

а) Вида $a^{f(x)}=a^{g(x)}$, где $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием ($а >0, a≠1$) равны только тогда, когда равны их показатели.

$f(x)=g(x)$

b) Уравнение вида $a^{f(x)}=b, b>0$

Для решения таких уравнений надо обе части прологарифмировать по основанию $a$, получается

$log_{a}a^{f(x)}=log_{a}b$

$f(x)=log_{a}b$

2. Метод уравнивания оснований.

3. Метод разложения на множители и замены переменной.

  • Для данного метода во всем уравнении по свойству степеней надо преобразовать степени к одному виду $a^{f(x)}$.
  • Сделать замену переменной $a^{f(x)}=t, t > 0$.
  • Получаем рациональное уравнение, которое необходимо решить путем разложения на множители выражения.
  • Делаем обратные замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^{f(x)}=t$, решаем его и результат записываем в ответ.

Пример:

Решите уравнение $2^{3x}-7·2^{2x-1}+7·2^{x-1}-1=0$

Решение:

По свойству степеней преобразуем выражение так, чтобы получилась степень 2^x.

$(2^x)^3-{7·(2^x)^2}/{2}+{7·2^x}/{2-1}=0$

Сделаем замену переменной $2^x=t; t>0$

Получаем кубическое уравнение вида

$t^3-{7·t^2}/{2}+{7·t}/{2}-1=0$

Умножим все уравнение на $2$, чтобы избавиться от знаменателей

$2t^3-7·t^2+7·t-2=0$

Разложим левую часть уравнения методом группировки

$(2t^3-2)-(7·t^2-7·t)=0$

Вынесем из первой скобки общий множитель $2$, из второй $7t$

$2(t^3-1)-7t(t-1)=0$

Дополнительно в первой скобке видим формулу разность кубов

$2(t-1)(t^2+t+1)-7t(t-1)=0$

Далее скобку $(t-1)$ как общий множитель вынесем вперед

$(t-1)(2t^2+2t+2-7t)=0$

Произведение равно нулю, когда хотя бы один из множителей равен нулю

1) $(t-1)=0;$ 2) $2t^2+2t+2-7t=0$

Решим первое уравнение

$t_1=1$

Решим второе уравнение через дискриминант

$2t^2-5t+2=0$

$D=25-4·2·2=9=3^2$

$t_2={5-3}/{4}={1}/{2}$

$t_3={5+3}/{4}=2$

Получили три корня, далее делаем обратную замену и получаем три простых показательных уравнения

$2^x=1; 2^x={1}/{2}; 2^x=2$

$2^x=2^0; 2^x=2^{-1}; 2^x=2^1$

$х_1=0; х_2=-1; х_3=1$

Ответ: $-1; 0; 1$

4. Метод преобразования в квадратное уравнение

  • Имеем уравнение вида $А·a^{2f(x)}+В·a^{f(x)}+С=0$, где $А, В$ и $С$ — коэффициенты.
  • Делаем замену $a^{f(x)}=t, t > 0$.
  • Получается квадратное уравнение вида $A·t^2+B·t+С=0$. Решаем полученное уравнение.
  • Делаем обратную замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^{f(x)}=t$, решаем его и результат записываем в ответ.

Способы разложения на множители:

Вынесение общего множителя за скобки.

Чтобы разложить многочлен на множители путем вынесения за скобки общего множителя надо:

  1. Определить общий множитель.
  2. Разделить на него данный многочлен.
  3. Записать произведение общего множителя и полученного частного (заключив это частное в скобки).

Пример:

Разложить на множители многочлен: $10a^{3}b-8a^{2}b^2+2a$.

Общий множитель у данного многочлена $2а$, так как на $2$ и на «а» делятся все члены. Далее найдем частное от деления исходного многочлена на «2а», получаем:

$10a^{3}b-8a^{2}b^2+2а=2a({10a^{3}b}/{2a}-{8a^{2}b^2}/{2a}+{2a}/{2a})=2a(5a^{2}b-4ab^2+1)$

Это и есть конечный результат разложения на множители.

Геометрия на плоскости (планиметрия)

Пусть имеется произвольный треугольник:

Тогда, сумма углов треугольника:

Площадь треугольника через две стороны и угол между ними:

Площадь треугольника через сторону и высоту опущенную на неё:

Полупериметр треугольника находится по следующей формуле:

Формула Герона для площади треугольника:

Площадь треугольника через радиус описанной окружности:

Формула медианы:

Свойство биссектрисы:

Формулы биссектрисы:

Основное свойство высот треугольника:

Формула высоты:

Еще одно полезное свойство высот треугольника:

Теорема косинусов:

Теорема синусов:

Радиус окружности, вписанной в правильный треугольник:

Радиус окружности, описанной около правильного треугольника:

Площадь правильного треугольника:

Теорема Пифагора для прямоугольного треугольника (c — гипотенуза, a и b — катеты):

Радиус окружности, вписанной в прямоугольный треугольник:

Радиус окружности, описанной вокруг прямоугольного треугольника:

Площадь прямоугольного треугольника (h — высота опущенная на гипотенузу):

Свойства высоты, опущенной на гипотенузу прямоугольного треугольника:

Длина средней линии трапеции:

Площадь трапеции:

Площадь параллелограмма через сторону и высоту опущенную на неё:

Площадь параллелограмма через две стороны и угол между ними:

Площадь квадрата через длину его стороны:

Площадь квадрата через длину его диагонали:

Площадь ромба (первая формула — через две диагонали, вторая — через длину стороны и угол между сторонами):

Площадь прямоугольника через две смежные стороны:

Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними:

Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности (очевидно, что формула выполняется только для фигур в которые можно вписать окружность, т.е. в том числе для любых треугольников):

Свойство касательных:

Свойство хорды:

Теорема о пропорциональных отрезках хорд:

Теорема о касательной и секущей:

Теорема о двух секущих:

Теорема о центральном и вписанном углах (величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу):

Свойство вписанных углов (все вписанные углы опирающиеся на общую дугу равны между собой):

Свойство центральных углов и хорд:

Свойство центральных углов и секущих:

Условие, при выполнении которого возможно вписать окружность в четырёхугольник:

Условие, при выполнении которого возможно описать окружность вокруг четырёхугольника:

Сумма углов n-угольника:

Центральный угол правильного n-угольника:

Площадь правильного n-угольника:

Длина окружности:

Длина дуги окружности:

Площадь круга:

Площадь сектора:

Площадь кольца:

Площадь кругового сегмента:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector